
ANDROID AUTOMOTIVE
EMBEDDED OS

INTRODUCTION BY P3

Google’s operating system Android Automotive Embedded OS for
connected in-vehicle infotainment (IVI) systems is already disrupting
the traditional automotive infotainment landscape. In this technical
white paper, we will give an overview of Android Automotive Embed-
ded OS features and architecture to support the decision-making
process for Original Equipment Manufacturers’ (OEMs) and Tier 1 sup-
pliers’ concerning their future infotainment strategies.

Android Automotive, Operating System (OS), Google Automotive Ser-
vices (GAS), Human-Machine Interface (HMI), In-Vehicle Infotainment
(IVI), User Experience (UX)

ABSTRACT

AUTHOR

KEYWORDS

PETER GESSLER
Android Automotive Architect
Peter.Gessler@p3-group.com

1

Today’s users demand from cars’ IVIs and connected services the same intui-
tive and exciting experience they are used to from their favorite consumer
electronic devices, apps and cloud services. Furthermore, they expect their
personal application eco-system to be integrates into the vehicle. All of this can
now be achieved much easier with Google’s Android Automotive OS.

Worldwide, vehicle manufacturers are today evaluating the benefits of Android
Automotive Embedded OS carefully. Some have already chosen to enter a for-
mal partnership with Google to co-create their next generation IVI incl. Google
Automotive Services (GAS). Others are using the open source project AOSP
incl. the car extensions to build an Android Automotive System independently
while a third fraction is still hesitating mostly due to concerns regarding de-
pendencies and data ownership.

 For those currently at the decision-making crossroad we want to shed light
on some of the more technical aspects of Google’s Android Automotive OS.
The paper is however not trying to be exhaustive in tackling all technical
aspects but rather aims at giving an overview. For a more deep-dive discussion
we recommend our Android Automotive Base Training.

In order to understand the individual components and the added value of the
operating system, we want to give a brief overview of its
structure.

Figure 1: Android Automotive architecture component view. Based on [1].

I. INTRODUCTION

II. FEATURE
 OVERVIEW

AIDL

AOSP Apps OEM Apps 3rd Party Apps

AIDL

Linux Kernel

HIDL

Car Services

Vehicle

Car Managers

Traditional
Android

Android System
Services

Android
Managers

Ap
pl

ic
at

io
n

Fr
am

ew
or

k
Se

rv
ic

e
La

ye
r

HA
L

BS
P

Provided by Google OEM 3rd Party

2

II. FEATURE
 OVERVIEW

Figure 1 shows the abstract layer architecture of Android Automotive with the
division into four layers. In this section, we focus on GAS and the built-in appli-
cations.

The OEM receives access to GAS through an associated partnership with
Google. This provides access to close communication & support, extended
technical documentation as well as the quarter pre-release (QPR) versions with
new updates and upgrades.

Google Automotive Services (GAS).

GAS describes a set of customer-specific and technical services that are pre-
compiled by Google and provided through a licensing model. The most
important services are

• Google Maps & Navigation: For navigation from point A to point
B with intelligent address, route, petrol station and charging station search.

• Google Assistant: Voice personal assistant for controlling various
vehicle functionalities (can be extended) or give additional
information to the user.

• Google Playstore: Provision and management of 3rd party
applications that are tailored to be used in the vehicle.

• SetupWizard: Creation of vehicle user profile accounts and
connectivity setup.

• Automotive Keyboard: A keyboard adapted for the automotive
industry to operate the touchscreen and support various languages.

Non-GAS describes a platform version that does not require the integration of
GAS. The OEM simply downloads the freely available AOSP source code with
car extensions and integrates its own applications and services. You would
choose this variant for example in case of a planned launch in China, due to
non-availability of Google services in this market, or if you are a Tier 1 supplier
without OEM contract as Google currently only partners directly with OEMs.

Hero applications. Besides GAS, Google is developing applications such as

• Media Center: Skeleton for the integration of media sources such as the
LocalMediaPlayer. The skeleton is fully integrated and interacts seamlessly
with the Notification center and the Dialer.

• Dialer: The central telephone application, which allows the contacts of the
connected smartphone to be managed and calls to be made.

• Car Settings: Management of various system settings such as Time & Lan-
guages, User Management and Connectivity.

• Notification Center: Brief system- notifications for the user and interac-
tions to start applications.

These applications are available at android.googlesource.com. In addition to
these vehicle-specific applications, numerous other applications are available
at … / package / apps /…

3

applications and implement general rules and restrictions that apply to all
system and user applications.

UI Frameworks The SystemUI / CarSystemUI manage the general structure of
the central screen. The user can customize these if necessary and change the
individual fragments of the bars and their content (e.g. StatusBar at the top
of the screen, global NavigationBar at the bottom as well as main fragment
and HVAC bar). Furthermore, the OEM/Tier 1 can manage the theming (use of
colors, fonts and styles) and the display of pop-ups via the SystemUI.

Google defines the SystemUI as “…a persistent process that provides UI for the
system but outside of the system_server process” [2]. The SystemUIApplication
extends the SystemUI with a defined set of services, for example the System-
Bars, PowerUI or self-designed services that work in an isolated way, which are
a major part of the system user interface and starts with the boot process.

One of the most important extensions to Android Automotive is the Drivin-
gUxRestrictions framework. This is already integrated into the applications
provided by Google. The framework uses the configuration file specified by the
OEM to prevent touch interaction by the end customer in certain driving situa-
tions so that the user is not distracted. The OEM can extend and customize the
existing framework therein.

Car-lib: In addition to the functions described for the HMI, there are countless
others on the other layers that are provided by Google. We want to point out
three special services [2] which reduced a lot of work for us.

CarInfoManager: Depending on the development strategy, the OEM may want
to manage multiple vehicle variants with one platform version. The CarInfoMa-
nager can be used to dynamically adapt the HMI. As a proxy component, this
provides the static information regarding the vehicle model, variant and other
relevant vehicle properties.

CarPowerManager: The behavior of the infotainment system and its applica-
tions largely depends on the system state of the vehicle. These communicate
via the CarPowerManager with the Vehicle HAL and the Vehicle Microcontroller
Unit (VMCU) based on a generic state machine, which is displayed in Figure 2.

III. FRAMEWORKS &
 LIBRARIES

4

The applications can, therefore, perform an individual action in the event of a
specific state or a state-change. This is necessary, for example, when switching
on/off services such as Bluetooth or Wi-Fi.

CarProjectionManager: The efficient integration and handling of different
projection technologies is a key requirement for today’s infotainment systems.
The user should be free to choose between Android Auto, Apple CarPlay or
other mirroring technologies. With CarProjectionManager, Google enables
the development of an application that guarantees the same system behavior
when establishing a connection, managing smartphones and closing the
connection.

The Android platform (AOSP) can be generically divided into the components
displayed in figure 3. Those are,

• Application framework and applications

• Android Automotive system service and Binder IPC

• Hardware Abstraction Layer

• Linux Kernel

Figure 2: Googles car power state machine. Based on [3].

IV.ANDROID
 AUTOMOTIVE
 EMBEDDED OS
 ARCHITECTURE

PPoowweerr oonn
((WWAAIITT__FFOORR__VVHHAALL))

VVHHAALL ((SSHHUUTTDDOOWWNN__IIMMMMEEDDIIAALLYY))

VVHHAALL ((SSLLEEEEPP__IIMMMMEEDDIIAATTEELLYY))

FFiinniisshh aappppss
((SSHHUUTTDDOOWWNN__

PPOOSSTTPPOONNEE))

WWaakkee
((DDEEEEPP__SSLLEEEEPP__EEXXIITT))

VVHHAALL
[[FFiinniisshheedd]]

VVHHAALL ((SSHHUUTTDDOOWWNN__CCAANNCCEELL))

VVHHAALL ((SSHHUUTTDDOOWWNN__PPRREEPPAARREE))

VVHHAALL
((OONN))

AAppppss ffiinniisshh
sshhuuttddoowwnn

VVHHAALL
((SSHHUUTTDDOOWWNN__

PPRREEPPAARREE))

VVHHAALL [[FFiinniisshheedd]]

OFF

Wait for
VHAL ON

SHUT
DOWN
PREPARE

Wait for
VHAL
finish

Suspend
to RAM

5

Google extended its AOSP system with

• Car system applications

• Car APIs

• Car Services

• Vehicle Hardware Abstraction Layer

to provide a fully functional vehicle-agnostic in-vehicle infotainment operating
system (refer to figure 1). The source code distribution of the IVI generally
consists of

OEM and 3rd party applications as a set of Android applications including the
HMI and application background services in the /product partition.

Android Open Source Project (AOSP): Include all the GIT-tree packages from
the generic system applications, the application framework, system services
through the HAL interfaces and should be in the /system partition.

Board Support Package (BSP): Includes the Linux kernel image with the HAL
implementation for given hardware. The BSP is System on the Chip (SoC) de-
pendent and part of the /vendor partition.

Figure 3: Android system architecture [4].

6

IV.ANDROID
 AUTOMOTIVE
 EMBEDDED OS
 ARCHITECTURE

The OEM can extend the existing source code with self-developed automoti-
ve or non-automotive applications and system services, e.g. head-up display
(HUD) management, tire pressure monitoring, charge program management,
and others to extend the functionality of its infotainment system.

Due to the architecture change carried out in Project Treble and the expansion
of the available partitions, not only the HMI layer but also the Android frame-
work or the BSP and the hardware can be replaced in the future (see Figure 4).

The following section provides an overview of the responsibilities and tasks of
respective system layers:

Application Framework: Commonly called the “HMI Layer”, the Application
Framework contains the system and user applications. Our recommendation
is to design the applications in such way that they are only responsible for the
visualization incl. small calculations to not block the MainUI thread and more
the core business logic to the System Services in the Service Layer. Furthermo-
re, applications manage their own translation labels and notifications using
background services. This design allows for an easy update in the future and
multiple HMI designs, e.g. for different car brands.

Figure 4: Platform-based operating system architecture [5].

Framework Framework Framework Framework

Legacy HAL

HIDL
(passthrough)

HIDL
(binderized)

HIDL
(binderized)

Legacy HAL Vendor
Implementation

Legacy HAL Vendor
Implementation

Legacy HAL Vendor
Implementation

HW Service Vendor
Implementation

Default HW Service

Default
Implementation

Legacy HAL

Default
Implementation

Legacy HAL

HW Service Process HW Service Process

4321

Before Treble Default
implementation

with passthrough
mode in Treble

Default
implementation
with binderized
mode in Treble

Binderized service
in Treble with no
wrapping or shim

layers

7

IV.ANDROID
 AUTOMOTIVE
 EMBEDDED OS
 ARCHITECTURE

Service Layer. System services are included in the Service Layer and started by
the SystemServer. They run as a System process which gives them additional
privileges which normal Android Services do not have. This approach provides
an opportunity for OEMs to develop other applications, that can use the ser-
vice without source code duplication. Furthermore, OEMs can use the services
as an additional layer for security reasons to avoid direct communication bet-
ween the applications and the Hardware Abstraction Layer.
Vehicle HAL. The role of the Vehicle HAL is to expose car-specific interfaces to
the system services, in an extendable, vehicle-agnostic manner. These inter-
faces include

• Access to signals to / from the ECUs in the vehicle

• Access to signals generated from the vehicle microcontroller unit to the IVI
OS

• Access to service-oriented functions available on the vehicle network (e.g.:
SOME-IP)

The described layers are the core elements of the platform and responsible for
the data exchange between the applications and the vehicle ECUs. A detailed
architecture is displayed in figure 5.

Figure 5: Detailed software component architecture view with extensions.
The processes will run top-down and bottom-up between the different components and layers.

API

AOSP Apps

Ap
pl

ic
at

io
n

Fr
am

ew
or

k
Se

rv
ic

e
La

ye
r

VH
AL

OEM Apps

OEM
CarProperty

Manager
OEM
Car

API

SYSTEM properties VENDOR properties

HIDL

Vehicle HAL

OEM
CarManager-X

AIDL

OEM
CarPropertyService

OEM
CarService

OEM
Car-XService

OEMProperty
ServiceIds

CarPropertyManagerOEM Car
Manager-X

AIDL

PropertyHalServiceIdsPropertyHalService

CarPropertyServiceCar-XService

Ca
r-

Li
b

O
EM

 C
ar

 S
er

vi
ce

3rd Party Apps

Provided by Google OEM 3rd Party

8

IV.ANDROID
 AUTOMOTIVE
 EMBEDDED OS
 ARCHITECTURE

In this technical white paper, we have provided some insights into the
Android Automotive Embedded operating system, which is continuously
being developed by Google and is available publicly on android.google-
source.com. In addition to the basic features, frameworks and libraries we
have explained the layered architecture and described how the system
can be expanded by the OEM.

We consider Android Automotive an effective platform that includes all
necessary core features. It requires lower development-, integration- and
maintenance-cost for connected infotainment systems. The system can be
fully customized, however any deviation from the original source code in-
creases the OEM’s development and maintenance effort. Another benefit
is that Google will release regular patches and annual major upgrades with
added features, extended functionalities and other improvements.

In our experience, the IVI development time can be cut short by 2 years
compared to the usual 4-year development cycle. In this case Android
Automotive Embedded OS was deployed incl. GAS and a fully customized
HMI was developed. The implementation of a non-GAS system will require
additional to for development and integration.

For more technical information on Android Automotive Embedded OS,
we recommend our Android Automotive Training to dive deeper into the
technical details.

CONCLUSION

CONTACT

PETER GESSLER
Android Automotive Architect
Peter.Gessler@p3-group.com

TINO MÜLLER
Mobility Solutions

Tino.Mueller@p3-group.com

MARIUS MAILAT
CTO

Marius.Mailat@p3-group.com

9

1. https://source.android.com/devices/automotive

2. https://android.googlesource.com/platform/frameworks/base/+/refs/
heads/master/packages/SystemUI/

3. https://source.android.com/devices/automotive/power/power

4. https://source.android.com/devices/architecture

5. https://events19.linuxfoundation.org/wp-content/uploads/2017/11/Project-
Treble.-What-Makes-Android-8-Different_-Fedor-Tcymbal-Mera-Software-
Services.pdf

V. REFERENCES

10

