/l

dSN343d d3INI43A FIVMNLE0S

SOFTWARE DEFINED

DEFENSE

Was landbasierte Verteidigungsplattformen vom automotivebasierten
Software Defined Vehicle lernen konnen

Autoren: Stefan Meyer, Julio Hohloch, Bernd Schaefer




0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Abstract

1.

2.

Software Defined Defense ist kein ,Nice to Have"

Status Quo in der Automobilindustrie und Lehren fur die
RUstungsindustrie

Software Defined Defense Vehicle (SDDV): Die konvergente
Plattform aus SDD-Prinzipien und SDV-Methoden
Betrachtungen zur Nutzung von Backendfunktionen

Fazit und Ausblick

p3

10

18

19




0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Software Defined Defense (SDD) steht fur den Wandel von hardwarezentrierten Systemen
hin zu flexiblen, softwaregesteuerten Verteidigungsplattformen. Ziel ist eine kontinuierlich
anpassbare, interoperable und sichere Verteidigungsfahigkeit durch Updates, modulare

Erweiterungen und standardisierte Schnittstellen.

Aus den Erfahrungen der Automobilindustrie mit dem Software Defined Vehicle (SDV)
lassen sich wertvolle Lehren ziehen: Standardisierung, klare Softwarearchitekturen
und funktionsorientierte Organisationen sind entscheidend, wahrend ein zu starker

Hardwarefokus und fehlende Integration den Fortschritt hemmen.

Das daraus abgeleitete Software Defined Defense Vehicle verbindet SDD-Prinzipien
mit SDV-Methoden: zonenbasierte Hardware, zentrale Rechenplattformen,
Abstraktionsebenen und einheitliche Datenmodelle schaffen Flexibilitat, Cyber-Resilienz
und Updatefahigkeit. Sichere Backend-Anbindungen ermoglichen datengetriebene
Wartung und Einsatzsteuerung, erfordern jedoch konsequente Security-by-Design-

Ansatze.

Organisatorisch wird Software zum Kernprodukt, Hersteller agieren als Systemintegratoren,
und neue Vertragsmodelle férdern kontinuierliche Leistungsfahigkeit statt

Einmalbeschaffung.

SDD kann damit nicht mehr als optionaler Ansatz gesehen werden, sondern vielmehr als
der SchlUssel fur Geschwindigkeit, Anpassbarkeit und technologische Uberlegenheit in

der Verteidigung.

P3




0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
L
m
Z
0
m

Software Defined Defense (SDD) ist aktuell einer der zentralen Trends in der militarischen
Technologieentwicklung. Das Konzept beschreibt aber mehr als nur einen weiteren
Modebegriff, ndmlich einen grundlegenden Paradigmenwechsel. Es ist der Ubergang
von gewachsenen, hardwarezentrierten Systemlandschaften hin zu anpassungsfahigen
Plattformen, deren Wirkung, Sicherheit und Interoperabilitat primar durch Software

bestimmt und Uber den kompletten Lebenszyklus fortlaufend weiterentwickelt wird.

Angesichts der zunehmenden Dynamik sicherheitspolitischer Bedrohungen und der
rasant voranschreitenden Digitalisierung ist die Fahigkeit, Streitkrafte schnell, flexibel und
wirksam an neue Szenarien anzupassen, entscheidend fur ihre Handlungsfahigkeit. Die
Konflikte in der Ukraine und im Nahen Osten zeigen deutlich, in welch rasantem Tempo
sich die Einsatzszenarien und -bedarfe verandern kénnen. Ausrustung, die gestern noch
hochaktuell war, kann morgen schon durch neue Taktiken, Sensorik und Wirkmittel

veraltet sein, wenn sie nicht schnell genug angepasst werden kann.

SDD verspricht genau dort Abhilfe: Eine Verteidigungsfahigkeit, die nicht durch starre
Release-Zyklen begrenzt wird, sondern Uber kontinuierliche Software-Updates, Feature-

Erweiterungen und sicherheitsrelevante Patches Schritt halt.
Die Vorteile von SDD liegen auf der Hand:

Steigerung der Leistungsfahigkeit durch kontinuierliche Software-Updates und

Funktionsverbesserungen im laufenden Betrieb

Erhohte Flexibilitat bei der Anpassung an neue Bedrohungen, Einsatzszenarien oder

Technologien

Langere Nutzungsdauer komplexer Systeme dank HW-Modernisierung via

Softwareupdates durch Entkopplung von Hardware und Software

Bessere Interoperabilitat durch standardisierte Datenmodelle, Schnittstellen und

Architekturen

Kosteneffizienz durch modulare Upgrades statt teurer Neubeschaffungen

P3




0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Um diese Potentiale ausschopfen zu kdnnen, darf SDD nicht als einzelnes Insel-IT-Projekt
verstanden werden, sondern muss sich als ein Transformationsprogramm verstehen, bei
dem Software- und Hardwarearchitektur neu gedacht werden. Die Softwarearchitektur
stehtim Zentrum und am Anfang der Entwicklung neuer, auf SDD basierender Fahrzeuge,
die Hardwarearchitektur stellt die notigen Ressourcen in einer maglichst flexiblen und

zukunftsfahig gestalteten Topologie zur Verfigung.

P3




0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
L
m
Z
0
m

Mit diesem grundlegenden Perspektivenwechsel gehen erhebliche technologische,
aber auch organisatorische Herausforderungen fur die RUstungsindustrie einher. Andere
Branchen haben vergleichbare Transformationen bereits durchlaufen bzw. befinden
sich mittendrin. Insbesondere die Automobilindustrie ist ein naheliegender Vergleich,
weil sie unter dem Stichwort Software Defined Vehicle (SDV) ahnliche Ziele wie SDD im
zivilen Bereich verfolgt: Fahrzeuge, deren Fahigkeiten durch Softwarepakete wachsen,
deren SicherheitslUcken Uber Over-the-Air-Updates (OTA) geschlossen werden und deren

Funktionsumfang in und mit einem Okosystem von Partnern erweitert wird.

2.1 Status Quo in der Automobilindustrie

Die heutigen PKW und LKW basieren auf klassischen Fahrzeugarchitekturen, d.h. sie
bestehen aus einer in der Vergangenheit standig gewachsenen Anzahl an Steuergeraten,
die Uber verschiedene Bussysteme wie CAN, CAN-FD, LIN, FlexRay und MOST
miteinander verbunden sind und untereinander kommunizieren. Typischerweise werden
Fahrzeugfunktionen in einem dedizierten Steuergerat abgebildet und Hardware und

Software werden als Paket von einem Zulieferer bezogen.

Fur einfache Fahrzeugfunktionen und eine begrenzte Zahl von Steuergeraten hat dieser
Ansatz gut funktioniert. Bei komplexen Fahrzeugfunktionen, die auf eine Vielzahl an
Sensoren und Aktuatoren zugreifen und eine hohe Rechenleistung mit Echtzeitfahigkeit
erfordern, wie es z.B. fUr hochautomatisierte Fahrfunktionen der Fall ist, sto3t dieser Ansatz

aber schnell an seine Grenzen.

Die Antwort der Automobilindustrie auf diese Herausforderungen sind neue
Fahrzeugarchitekturen, bei denen wenige Hochleistungsrechner (HPCs) im Zentrum
stehen, die Uber leistungsstarke Bussysteme mit hoher Bandbreite verbunden sind. Die
meisten traditionellen Hersteller verfolgen beim Ubergang von der klassischen zur neuen
Architektur einen evolutionaren Ansatz, bei dem bestehende Steuergerate schrittweise

durch Zentralrechner ersetzt werden. Neue Marktteilnehmer wie Tesla haben auf der

P3




0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
L
m
Z
0
m

,Grunen Wiese" ohne historisch gewachsene Altlasten einen radikaleren Ansatz umgesetzt.

Bisher wurden seitens der OEM hauptsachlich zwei unterschiedliche Strategien zur
Umsetzung gebracht. Eine Variante ist die Integration Uber Funktionsdomanen. Dabei
werden einzelne HPCs jeweils einer bestimmten Funktionsgruppe wie Fahrerassistenz
oder Infotainment gewidmet und die verbleibenden Steuergerate (ECUs) entsprechend
ihren Funktionen angebunden. Eine andere Strategie ist die raumliche Clusterung
der Funktionen, bei der die verbleibenden ECUs auf Basis ihrer Lage im Fahrzeug mit
zonalen HPCs verbunden werden. Ein gangiger, weil den typischen, domanenorientierten
Organisationsstrukturen traditioneller OEMs naherer Ansatz, ist eine Kombination aus

domanenorientierten Zentralrechnern und daran angebunden Zonencontrollern.

Abbildung 1: Architekturvergleich

P3




0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Die externe Kommunikation der Fahrzeuge mit Backendsystemen oder z.B. Smartphones
Uber LTE- und WLAN-Module oder USB-Schnittstellen ist in aktuellen (Premium-)Modellen
bereits Standard. Uber OTA-Updates werden in regelmaBigen Zyklen Fahrzeugfunktionen
aktualisiert oder neue Funktionen (gegen entsprechendes Entgelt) zur Verfugung gestellt.
Mit dem Konzept des Software Update Management Systems (SUMS) existieren zudem
regulatorisch verankerte Rahmen in verschiedenen Markten, z.B. UNECE R156 oder GB
44495-2024, die die kontinuierliche Aktualisierung von Fahrzeugsoftware zum festen

Bestandteil des Produktlebenszyklus machen.

GCleichzeitig hat es die Automobilindustrie in der Vergangenheit vielfach versaumt,
Ubergreifende Standards fur die Software zu definieren, unternehmensintern wie auch
branchenweit. Manche modernen Architekturen leiden bspw. darunter, dass zu ihrer
Entstehung zwar die Hardwaretopologie State-of-the-Art war, die zugrundeliegenden
Standards fur Schnittstellen und Datenmodelle in der Software als Fundament aber

gefehlt haben.

Branchenweit sind fruhe Versuche gescheitert, gemeinsame Standards fur diese
Fundatemente des SDV zu definieren oder haben nur begrenzt Wirkung entfaltet. Statt
ein gemeinsames, deutsches Autobetriebssystem zu entwickeln, wie es 2021 angeregt
wurde, haben die Hersteller begonnen eigene, im Zweifel inkompatible, softwarezentrierte

Architekturen zu entwickeln.

DemtechnologischenWandelfolgtbeidenetabliertenHerstellerninder Automobilindustrie
meistdieAnpassungderStrukturenindenUnternehmen:Klassischkomponentenorientierte
Organisationen, die Hardware und Software eng gekoppelt entwickeln, mussen sich zu
funktions- und systemorientierten Organisationen transformieren. Der Fokus verlagert
sich vom einzelnen Steuergerat hin zu Ende-zu-Ende-Funktionalitaten — eine Umstellung,
die nicht ohne Bruche verlauft. Und meist wird der organisatorische und kulturelle Wandel
erst nach dem technologischen eingeleitet und nicht parallel dazu oder gar vorgelagert.
Dadurch behindern vielfach noch immer komponentenorientierte ,Silo“-Denkweisen den

erfolgreichen — auch technologischen — Ubergang.

Diese Beispiele zeigen, dass die Automobilindustrie auf dem Weg hin zu softwarebasierten
Fahrzeugarchitekturen bereits wertvolle Erfahrungen gesammelt hat und Technologien

erfolgreich im Feld erprobt. Die Umstellung von verteilten Steuergeratelandschaften hin

P3




0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
L
m
Z
0
m

zu zentralisierten HPCs ist dabei in vollem Gange und wird im iterativen Ansatz umgesetzt.

Allerdings zeigt sich auch, dass dieser Transformationsprozess nicht ohne
Herausforderungen verlauft und weiterhin verlaufen wird. In der Vergangenheit lag der
Fokus vieler Hersteller zu stark auf der Hardwareebene, wahrend der Auflbbau skalierbarer,
wiederverwendbarer und gut wartbarer Softwarearchitekturen zu wenig berucksichtigt

wurde.

Die Ausgangslagen, Herangehensweisen und Fortschritte der unterschiedlichen Hersteller
sind sehr unterschiedlich. Viele etablierte OEMs haben nach wie vor groBe Probleme
mit dem Wandel, sowohl technologisch als auch kulturell. Neuere Marktteilnehmer aus
den USA oder die Wettbewerber aus China sind dank radikalerer Konzepte auf Basis von

Elektrofahrzeugen dem Zielbild des Software Defined Vehicle oft wesentlich naher.

Die gewonnenen Erkenntnisse verdeutlichen, dass der Erfolg eines SDV maf3geblich von
einer konsequent softwarezentrierten Denkweise, klaren Entwicklungsprozessen und
einer starkeren Trennung von Hardware- und Softwareverantwortlichkeiten abhangt. Die
Branche hat also bereits wichtige erste Schritte gemacht, muss aber weiterhin lernen,
Software als das Kernprodukt zu begreifen und dieses entsprechend organisatorisch wie

technologisch umzusetzen.

2.2 Lessons Learned fur den Verteidigungssektor

Die Transformation etablierter, komponentenorientierter Fahrzeugarchitekturen und
Unternehmen zu softwarezentrierten Systemen und Organisationen ist anspruchsvoll,
das zeigen die Erfahrungen aus der Automobilindustrie. Die RUstungsindustrie kann und

sollte aus diesem wertvollen Erfahrungsschatz lernen.

Die RUstungsindustrie verfugt dank verschiedener Initiativen z.B. der DARPA, oder NATO
bereits Uber Grundlagen fur eine Standardisierung. Besonders hervorzuheben ist die NATO
Generic Vehicle Architecture (NGVA), definiert in STANAG 4754. Sie bietet eine robuste,
wenn auch nicht vollumfangliche, Ausgangsbasis, um das Konzept von Software Defined
Defense zumindest im Bereich der Landfahrzeuge konkret umzusetzen. Dank ihrer
langen Tradition im Systems Engineering ist die RUstungsindustrie auBerdem gewohnt,

komplexe SystemverblUnde ganzheitlich zu betrachten. Das erleichtert die Umsetzung

P3




0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
L
m
Z
0
m

funktionsorientierter Organisationsmodelle.

Die LehreausSDV fur SDD kann nicht ,Copy & Paste” sein,sondern, Prinzipien Ubernehmen,
Kontexte respektieren, bekannte Fehler vermeiden®. Standardisierung und konsequente
Modularisierung schaffen die Hebel fUr Geschwindigkeit und Qualitat; OTA-Fahigkeit wird
zum Motor kontinuierlicher Wirkung; funktionsorientierte Organisationen vermeiden

Ubergabereibung.

Wenn es der RuUstungsindustrie gelingt, die Erkenntnisse und Erfahrungen aus der
Automobilindustrie mit dem SDV zu Nutzen und mit den eigenen Starken zu verbinden,
kann die erfolgreiche Transformation zum SDD auch in der durch die geopolitischen

Umstande notwendig gewordenen Geschwindigkeit gelingen.

P3




10

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Durch die enge, technologische Verwandtschaft und die durch die NGVA etablierte
Referenzarchitektur, eigenen sich militarische Landfahrzeuge besonders, um die
Anforderungen und Chancen von SDD und das Potential der Lessons Learned aus der
Automobilindustrie und dem SDV greifbar zu machen. Die Summe dieser beiden Faktoren

beschreibt im Kern ein SDDV, ein Software Defined Defense Vehicle.

Zu unterscheiden sind dabei zwei grundlegende Bereiche: Das Basisfahrzeug und die
einsatzspezifischen Aufbauten, Missionscontainer und Sonderaufbauten, die sich auf

standardisierte Grundfahrzeuge setzen lassen.

Abbildung 2: NGVA-Referenzarchitektur

P3




1

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Die Aufbauten sind im Grundsatz modular gestaltet und verfugen Uber Schnittstellen zum
Basisfahrzug, die ihren Betrieb ermoglichen. Die NGVA gibt hier eine gute Grundlage, um
diese modularen Aufbauten im Sinne eines SDDV zu gestalten. Das Basisfahrzeug selbst
wird in der NGVA jedoch nur Uber Schnittstellen und ein ,Automotive Bus Based Network®
abgebildet. Die nachste Entwicklungsstufe des SDDV liegt somit im Basisfahrzeug selbst,
dessen Softwarearchitektur und darauf aufbauend die elektrische und elektronische
Architektur so gestaltet sein mussen, dass Funktionsintegration, Updatefahigkeit und

Cyber-Resilienz von Anfang an gewahrleistet sind.

Die Basis dafur, und damit fur ein SDDV, ist die Fahigkeit der Software- und
Hardwarearchitektur, flexibel auf sich andernde Anforderungen und damit Anpassungen
der Software reagieren zu kdnnen. Das kann nur gewahrleistet werden, wenn idealerweise
jede Softwarekomponente flexibel auf jede Hardwarekomponente verschoben werden
kann. Die Softwarearchitektur muss ins Zentrum rtcken und die Hardwarearchitektur auf

dieser Basis gestaltet werden.

Entscheidend fur die softwarezentriere Architektur des SDDV sind zwei wesentliche

Festlegungen:
1. Die Definition von Abstraktionsebenen

2. Der Aufbau eines Datenmodells

3.1 SDDV-Abstraktionsebenen

Die saubere Definition von Abstraktionsebenen legt die Fahigkeiten und Ressourcen
fest, die die Architektur des SDDV der Software bereitstellt. Typische Abstraktionsebenen
sind z.B. Rechenleistung sowie Sensoren und Aktuatoren, aber auch Fahrzeugsignale,
Speicherschutz und weitere. FUr jede dieser Ebenen werden Gruppen gebildet, die sich
in ihren Eigenschaften und Fahigkeiten unterscheiden. Betrachten wir zwei Beispiele im

Detail:
1. Rechenleistung

2. Sensoren und Aktuatoren

P3




12

0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
L
m
Z
0
m

3.1.1 Abstraktionsebene Rechenleistung

Die notwendige Rechenleistung des SDDV wird Uber verschiedene Klassen definiert. Dabei
gilt die MalRgabe, so wenige Klassen wie maoglich aber so viele wie ndtig zu definieren,
da fur jede Klasse einheitliche Entwicklungs- und Laufzeitumgebungen etabliert werden
mussen, um die Plug-and-Play-Fahigkeit der Softwarekomponenten auf verschiedenen
Hardwarekomponenten sicherzustellen. Fur das SDDV nehmen wir beispielhaft drei
Klassen an: Rechenleistung, Echtzeitfahigkeit und funktionale Sicherheit. Geeignete
Entwicklungs- und Laufzeitumgebungen fur diese Klassen sind beispielsweise QNX,

AUTOSAR Adaptive oder Linux.

3.1.2 Abstraktionsebene Sensoren und Aktuatoren

Bei der standardisierten Schnittstelle der Software zu Sensoren und Aktuatoren sind

grundsatzlich zwei Ansatze denkbar.

Beim Low-Level Ansatz bietet die SDDV-Architektur der Software z.B. die direkte Steuerung
der Aktuatoren Uber Pulsweitenmodulation (PWM) an. Dieser Ansatz ist besonders
geeignet, wenn Hardware und Software vom gleichen Lieferanten bezogen werden, da
der Lieferant die Hardware im Detail kennt und Uber die direkte Schnittstelle optimal

ansteuern kann.

Beim High-Level Ansatz stellt die Architektur der Software héher aggregierte Schnittstellen
zur VerfUgung wie gewulnschte Motordrehzahl oder bendtigtes Drehmoment. Die
zugrunde liegenden Berechnungen fur die tatsachliche Ansteuerung z.B. der Hardware
Ubernimmt die Schnittstelle. Dieser Ansatz ist besonders geeignet, wenn Hardware und

Software getrennt bezogen werden.

FUr das SDDV nehmen wir beispielhaft aufgrund geringerer Stuckzahlen und niedrigerer
Preissensibilitat des RUstungssektors im Vergleich zur Automobilindustrie einen
kombinierten Ansatz an. Dieser bedeutet zwar hdéhere Kosten durch z.B. mehr Overhead
und notwendige Rechenleistung, da verschiedene Ebenen bedient werden mussen,

gewahrleistet aber maximale Flexibilitat.

P3




13

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

3.2 SDDV-Datenmodell

Neben den Abstraktionsebenen ist der Aufbau eines einheitlichen Datenmodells
die zweite wesentliche Grundlage fur die softwarezentrierte Architektur des SDDV.
Entscheidend hierflr ist die Definition von technologieunabhangigen Datenpunkten
(z.B. Geschwindigkeit, Drehmoment, Temperatur, Hohe) und der Aggregation dieser
Datenpunkte in sinnvolle Gruppen (z.B. Fahrzeugzustand, Umgebungsbedingungen).
Die SDDV-Architektur stellt den Softwarekomponenten somit keine Einzelsignale zur
Verfugung, sondern die entsprechenden Gruppen. Uber die Kommunikationsmatrix wird
sichergestellt, dass die von einer Applikation bendtigten Signale entsprechend geroutet

werden.

3.3 Technologiefestlegung

DernachsteSchrittaufdemWegzumSDDVistdieUmsetzungdestechnologieunabhangigen
Datenmodells und der Abstraktionsebenen in reale Schnittstellen und damit die
Festlegung, welche Technologien fur die Codegenerierung in der Architektur genutzt
werden. Entscheidend fur die Auswahl der Technologien sind insbesondere ein
maoglichst hoher Grad der Automatisierung und die vorhandenen Kompetenzen in
der Entwicklungsorganisation. Aus der Vielzahl der Technologien, die auf dem Markt
verfuigbar sind, wie DDS, SOME/IP oder Linux D-Bus, wird ein geeignetes Set von wenigen

Technologien ausgewahlt, das standardisiert Uber alle Entwicklungsbereiche genutzt wird.

Die Technologiefestlegung und die mit ihr verbundene geringe Diversitat der genutzten
Toolchains bringen viele Vorteile mit sich. Ressourcenverschwendung in der Hardware
z.B. durch unnotigen Speicherbedarf konkurrierender Libraries wird vermieden,
SicherheitslUcken werden reduziert und die Flexibilitat der Entwicklungsteams wird
erhoht, wenn nur wenige, aber daflur von allen beherrschte Technologien verwendet

werden.

P3




14

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

3.4 SDDV-Softwarearchitektur

Die definierten Abstraktionsebenen, Datenmodelle und Technologien sind die Grundlage
fur die Softwarearchitektur des SDDV. Auf dieser Basis werden fur jede Funktion die
Wirkketten z.B. im klassischen IPO-Modell beschrieben, um die Abhangigkeiten und
DatenflUsse zu modellieren. Aus diesem Modell kann mit entsprechendem Tooling
automatisiert die Kommunikationsmatrix erstellt werden. Wenn die Signalflisse mit
entsprechenden Annotationen fur Anforderungen an z.B. Latenz oder Bandbreite versehen
werden, konnen aulRerdem direkte Anforderungen an die Hardwaretopologie abgeleitet

werden.

Abbildung 3: Schematische Darstellung einer Wirkkette

P3




15

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

3.5 Cybersecurity

Das Thema Cybersecurity ist in der Defensebranche von grof3ter Bedeutung und daher
gesondert zu betrachten. Sicherheit wird nun nicht mehr primar physisch, sondern
vielmehr durch mehrschichtige Mechanismen auf Architekturebene erzielt. Erforderlich
sind u.a. Zero-Trust-Prinzipien, harte Mandantentrennung (SoC-/Hypervisor-/Container-
Isolation) sowie konsequente Least-Privilege- und Policy Enforcement Mechanismen
fur jede Softwarekomponente. Dazu kommen kryptographisch abgesicherte
Boot- und Update-Ketten (Secure Boot, Measured Boot, Remote Attestation), eine
kontinuierlich gepflegte SBOM inklusive automatisiertem Vulnerability- und Patch-
Management sowie ein Governance-Modell, das Update Frequenzen, Rollout-Risiken
und Zulassungsabhangigkeiten beherrscht. Auf Laufzeitebene sind Intrusion/Anomaly-
Detection-Systeme erforderlich, die sowohl signalbasierte als auch modellgestltzte
Verfahren zur Angriffserkennung nutzen und mit Reaktionslogiken fur Containment, Rate

Limiting oder isolierbaren Micro-Recovery-Zonen gekoppelt sind.

DaruUber hinaus gewinnen deterministische Safety-/Security-Partitionen,
manipulationsresistente Kommunikationspfade (MACsec, TLS mit Mutual Authentication),
robuste SchlUsselverwaltung (HSM-gestUtzt) sowie Integritats- und Herkunftsnachweise
fur alle Datenstréme an Bedeutung. Fur einsatzkritische Funktionen mussen abgestufte
Degradations-, Redundanz- und Fallback Konzepte existieren, die auch bei teilweiser
Kompromittierung oder gestdrter Konnektivitat, etwa Uber lokale Entscheidungslogik,

abgesicherte Notbetriebsmodi oder fail operational-Architekturen, weiterarbeiten.

P3




16

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

3.6. SDDV-Hardwaretopologie

Parallel zur Softwarearchitektur wird die Topologie der Hardware entwickelt. Die
softwarezentrierte Herangehensweise ermoglicht grundsatzliche flexible Topologien fur

z.B. unterschiedliche Modellreihen innerhalb der gleichen Architektur.

Der zentrale Grundgedanke der Hardwaretopologie im SDDV ist die Zonenbildung
mit HPCs (Zonencontroller), welche die Ein- und Ausgangssignale der umliegenden
Sensoren und Aktoren bundeln, (z.B. vorne links, vorne rechts, hinten links, hinten rechts)
und weiterverarbeiten. Damit werden Kabellangen, Gewicht und Kosten reduziert
und Durchbriche der Panzerungen minimiert. Gleichzeitig wird durch verminderte

Komplexitat und Storquellen die Robustheit erhéht.

AAbbildung 4: Schematische Darstellung Hardwaretopologie im SDDV

P3




17

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Die standardisierten Technologien ermoglichen eine flexible Verteilung der
Softwarekomponenten auf den Zonencontrollern. Dadurch kdnnen einerseits Funktionen
auf entsprechende, raumlich naheliegende Hardware gemappt werden. Andererseits
gewahrleistet diese Flexibilitat eine gewisse Redundanz, da kritische Funktionen bei Ausfall
eines Controllers durch andere Ubernommen werden kénnen. Um die Notwendigkeit
weiterer Redundanzen zu ermitteln, z.B. durch verteilte Zentralrechner im vorderen und
hinteren Bereich des Fahrzeugs, bietet sich ein konsequentes Systems Engineering an,um
die unvermeidlichen Zielkonflikte (z.B. raumliche Verteilung vs. minimierte Kabellangen

und Durchbrlche) auf Basis der zu erwartenden Einsatzzwecke abzuwagen.

FUr die Vernetzung innerhalb der Topologie empfiehlt die NGVA getrennte Bussysteme fur
Kommunikation mit hohen Anforderungen an Latenz und Bandbreite, da sich diese beiden
Anforderungen klassischerweise gegenseitig schaden. Standard fur hohe Anforderungen
andie Latenz und Echtzeitkommmunikation sind CAN-Busse, fur hohe Bandbreite Ethernet.
Allerdings ist die Leistungsfahigkeit der Bussysteme auch von den Betriebssystemen der
verbundenen Controller abhangig und moderne Ethernet-Busse kdonnen vielfach auch bei
der Latenz mit CAN-Bussen konkurrieren. FUr das SDDV bietet sich daher ein Kompromiss
an, bei dem das Backbone grundsatzlich ein Ethernet-Bus ist, der an kritischen Punkten

mit hochsten Echtzeit-Anforderungen durch einen zusatzlichen CAN-Bus erganzt wird.

3.7 Lieferketten

Das SDDV wirkt sich auch direkt auf die unterliegenden Lieferketten aus. Durch die
Standardisierung auf wenige Middleware- und Kommunikationstechnologien mussen
Zulieferer ihre Komponenten konsequent an ein einheitliches Architektur- und
Sicherheitsmodell anpassen. Das reduziert die Variantenvielfalt und erleichtert den
Austausch von Komponenten, erhoht aber zugleich den Anpassungsdruck auf Lieferanten,

welche die entsprechenden Kompetenzen und Toolchains erst aufbauen mussen.

Zugleich verlagern sich die bisherigen Abhangigkeiten. Weniger proprietare Hardware,
dafUr mehr software- und datengetriebene Integrationspunkte, die neue Risiken fur
Vendor-Lock-in oder technologische Engpasse schaffen kdnnen. OEMs mussen daher
technologische Reifegrade, Security-Compliance und Updatefahigkeit starker als

Bewertungs- und Steuerungsgréfen in der Lieferantenlandschaft verankern.

P3




18

0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Die Integration von Backendfunktionen in Militarfahrzeugen bietet erhebliche Vorteile in
Bezug auf Konnektivitat, Effizienz und operative Transparenz. Uber sichere Cloud- oder
lokale Backends kénnen Fahrzeuge Echtzeitdaten zu Fahrzeugzustand, Missionsstatus,
Logistikanforderungen und Umgebungsbedingungen austauschen. Dies ermadglicht
Potenziale bzgl. praventiver Wartung, schnellere Softwareupdates, verbesserte

Lageerkennung und koordiniertem Flottenmanagement.

Eine zentrale Verwaltung wie ein Kommandostand kann die Fahrzeugleistung
Uberwachen, Ausfalle vorhersagen und die Missionsplanung auf der Grundlage praziser,
kontinuierlich aktualisierter Daten optimieren. Solche Fahigkeiten entsprechen den
modernen Verteidigungstrends hin zu softwaredefinierten und netzwerkzentrierten
Operationen, bei denen die digitale Infrastruktur die Reaktionsfahigkeit verbessert und

Ausfallzeiten reduziert.

Die Gewahrung des Backend-Zugriffs auf Militargerat bringt jedoch auch erhebliche
Herausforderungen und Risiken mit sich. Das Hauptproblem ist die Cybersecurity: Die
Backend-Konnektivitat vergroBert die Angriffsflache und setzt Fahrzeuge potenziell

Datenabgriffen, Fernmanipulationen oder feindlichen Eingriffen aus.

Die Gewahrleistung einer sicheren Authentifizierung, VerschllUsselung und Isolierung
kritischer Systeme ist dabei unerlasslich. Die Abhangigkeit von der Netzwerkverfugbarkeit
und der Backend-Infrastruktur kann auch die Widerstandsfahigkeit in Umgebungen
mit eingeschrankter bzw. nicht vorhandener Konnektivitat beeintrachtigen, in denen die
Kommunikationsverbindungen aus verschiedensten Griinden unterbrochen sind. Daruber
hinaus werfen insbesondere Datenhoheit und Zugriffskontrolle strategische und ethische

Fragen auf, wenn Teile der Backend-Infrastruktur von Drittanbietern verwaltet werden.

P3




19

0
@)
S
$
>
)
m
)
m
L
Z
m
O
o)
m
L
m
Z
0
m

SDD steht fur einen echten Paradigmenwechsel: Wirkung, Anpassbarkeit und
Interoperabilitatwerden primardurchSoftwareerzieltund Uberdengesamten Lebenszyklus
weiterentwickelt. Aus den Erfahrungen der zivilen Automobilindustrie mit dem SDV
lasst sich fUr Landplattformen schlUssig ein SDDV mit folgenden Kernpunkten ableiten:
Zentrale Rechenplattformen, klare Abstraktionsebenen, einheitliche Datenmodelle und
die OTA-Fahigkeit erhohen Tempo, Leistungsfahigkeit und Nutzungsdauer. Zugleich
zeigt der SDV-Weg auch maogliche Fallstricke auf, etwa ein zu starker Hardwarefokus oder
mangelnde Standardisierung. Die RUstungsindustrie kann hiervon gezielt lernen: Software
zuerst und mit Prioritat denken, Standards konsequent anwenden und ausbauen sowie

die Modularitat von Lieferartefakten erzwingen.

Mit der reduzierten physischen Trennung im Fahrzeug (zonenbasierte HPCs statt vieler
isolierter ECUs) verschiebt sich das Cybersecurity-Zielbild: Sicherheit entsteht nicht
mehr primar durch Verkabelungstopologien, sondern durch architekturverankerte
Schutzmechanismen. Kurz: Security-by-Design und Resilienz ersetzen die allzu oft

vorhandene lllusion physischer Sicherheit.

Das SDDV hat zudem tiefgreifende organisatorische und kommerzielle Implikationen:
Hersteller entwickeln sich zu Systemintegratoren, Funktionen werden Ende-zu-Ende
verantwortet. Governance, Zertifizierung und Abnahme mussen von einer punktuellen
Freigabe aufkontinuierlich belegte Betriebssicherheit umgestellt werden.In der Lieferkette
gewinnen klar vorgegebene Schnittstellen, wiederverwendbare Plattformen und IP-
Regelungen an Gewicht. Geschafts- und Vertragsmodelle verschieben sich zu leistungs-
und wirkungsbasierten Vertragen, Lifecycle-Services und softwarebasierten Upgrades
statt Einmalbeschaffung. Offene Standards und korrekt definierte APIs ermdglichen
Wettbewerb auf Funktions-Ebene und senken den Vendor Lock in Effekt unter Bewahrung

der staatlichen Souveranitat.

P3




20

0
@)
T
$
>
)
m
)
m
L
Z
m
O
o)
m
T
m
Z
0
m

Die Kernbotschaft lautet daher: Die RUstungsindustrie kann die Erkenntnisse der
zivilen Automobilindustrie bzgl. des SDV nutzen, bekannte Fehler vermeiden und
durch konsequent softwarezentriertes Denken, harte Cyber-Resilienz und passende

Organisations- und Vertragsformen den Wandel hin zu einem echten SDDV beschleunigen.

Wer Architektur, Prozesse und Geschaftsmodelle jetzt auf ,Software als Kernprodukt*

ausrichtet, gewinnt Tempo, Wirkung und Uberlegenheit, ohne dabei Sicherheit zu opfern.

P3




21

0
o
T
g
>
Py
m
9
m
1
Z
m
O
9
m
T
m
Z
n
m

Bernd Schafer

Managing Director | Defence

bernd.schaefer@p3-group.com

Address

P3 group GmbH
Heilbronner Stral3e 86
70191 Stuttgart
Germany

Contact

+49 711 252 749-0
mail@p3-group.com

WWW.p3-group.com

P3




	Abstract
	1.	Software Defined Defense ist kein „Nice to Have“
	2. 	Status Quo in der Automobilindustrie und Lehren für die Rüstungsindustrie
	3.	Software Defined Defense Vehicle (SDDV): Die konvergente Plattform aus SDD-Prinzipien und SDV-Methoden
	4. 	Betrachtungen zur Nutzung von Backendfunktionen
	5.	Fazit und Ausblick

